Introduction to Digital Trace Data: Quality, ethics, and analysis Lecture 5: The role of AI in DTD **Javier Garcia-Bernardo** Assistant Professor Department of Methodology and Statistics ### Where are we? Week 4: Errors in DTD Week 6: Ethics and Legislation Week 7: Designed big data Week 8: Beyond DTD and Q&A # **Today's material** - 1. What are Algorithms/Al/Machine Learning? - 2. Using ML to study societies - 3. The impact of biased ML in DTD - 4. The impact of ML in societies - 5. Dealing with bias in ML #### **TODAY** ### Lecture - 1. Explain machine learning in your own words - 2. Explain why machine learning models may be biased. - 3. Understand the effects of ML on DTD and society. - 4. Assess bias in ML models ## Lab Apply a ML model to text data Audit a ML model # 1. What is machine learning? #### **ALGORITHMS** Automated instructions #### ARTIFICIAL INTELLIGENCE Programs with the ability to mimic human behavior #### MACHINE LEARNING Algorithms with the ability to learn without being explicitly programmed #### DEEP LEARNING Subset of machine learning in which artificial neural networks adapt and learn from vast amounts of data #### **Machine Learning** "A computer program is said to learn from experience *E* with respect to some class of tasks *T* and performance measure *P* if its performance at task *T*, as measured by *P*, improves with experience *E*." (Samuel/Mitchell, 1959/1997) - Experience: Data (e.g. comments from TikTok) - Task: Goal of the model (e.g. predict hate speech) - Performance measure: Accuracy, R², etc Is a linear regression a machine learning model? (Author: Johannes Vrana, Vrana GmbH, Licenses: CC BY-ND 4.0) # Supervised vs unsupervised ML Supervised ML: We have inputs (features, independent variables) and an output (target, dependent variable) Unsupervised ML: We have inputs and (mostly) try to find groups https://medium.com/@RayKleptzo/basic-machine-learning-concepts-regression-classification-and-clustering-66a216dac9cd #### **Examples** - (A) You use at an advertisement company and want to customers into segments based on their purchasing behaviours, age, maximal educational degree attained, etc. - → Unsupervised - (B) You work at a bank and want to develop a model that helps them predicting which loan applicants will default (not be able to pay the loan) based on their financial transactions. - → Supervised (classification) - (C) You use news and social media analytics to predict changes in the stock market. You will use a small number of stocks as target indicators, and web-scrapped text from social media and the news. You have access to previous instances of this data, and you want to predict the values for your indicators in the near future. - → Supervised (regression) # Using ML to understand societies •Description: The goal is to describe patterns or groupings in historical data. •Prediction: The goal here is to predict outcomes. For example, predict missing data, predict risk of developing diseases, or label data. •Explain: The goal here is to understand the causal relationships in the data to influence the outcomes we care about. ## In data analysis: Descriptive (unsupervised ML) **RESEARCH ARTICLE** Framing COVID-19: How we conceptualize and discuss the pandemic on Twitter Philipp Wicke 1*, Marianna M. Bolognesi 2 - Question: What is the framing of the COVID pandemic? Framing of WAR (fight, combat, battle), STORM (wave, storm, cloud), MONSTER (evil, horror, killer) or TSUNAMI (wave, tragedy, catastrophe). - Data: Twitter around #Covid-19 (80 hashtags) Topic #I: Communications and Reporting Topic #III: Politics Topic #II: Community and Social Compassion ## In data analysis: Prediction (supervised ML) #### Predicting wealth/SES: (Blumenstock et al., 2015) (Chetty et al, 2022) # 2. Why are ML models often biased*? *The model performance is different for different subgroups # **Errors in algorithms** We need to consider the errors of every algorithm: - How often they fail? - For whom do they fail? (bias) No model will be perfect, but we need to understand when and for whom they fail. # Fitting and using ML models (supervised ML) 1) Training data X: Flights Y: Criminal to Russia 3 12 2) Model 3) New data If X>10: criminal X: Flights If X<= 10: not criminal to Russia 20 6 ## How often do they fail? The confusion matrix ## For whom do they fail? ## **Exercise (in pairs)** You work at a Dutch bank and you want to develop a model that will help them predict which loan applicants will default (not be able to pay the loan) based on their financial transactions. You have labeled data from customers in Utrecht for the last three years. You want to predict default for all new loan applicants. In which parts of the process may bias be introduced? Think about - The representativeness of the training data - The quality of the outcome (default/non-default) in the training data for different subpopulations - The quality of the features (financial transactions) in the training data for different subpopulations - The machine learning pipeline ## Four main sources of bias in a ML model **Sample bias:** the training data does not generalize to the prediction data. | : Flights
o Russia | Y: Criminal | |-----------------------|-------------| | 3 | × | | 12 | | | 1 | * | | 80 | | Your sample may be only Dutch people, who don't go to Russia often (unless they are criminals in this example). This could happen because: - you are getting the number of flights from KLM only - you are using a script that cannot handle Russian names, and they are not merged properly in the process - you collected data during COVID times, or 10 years ago (drift) ## Four main sources of bias in a ML model **ML pipeline bias:** e.g., you are using a model or performance metric that focuses mostly on the majority class; or maybe there are errors in your code. **Features bias:** the features (flights to Russia) have different meaning from some subpopulation. Outcome bias: the label (criminal/not criminal) has different meaning from some subpopulation. For example if you only look for criminals among non-Dutchs, you will have a training sample in which all Dutchs are not criminals. | Gender
Classifier | Darker
Male | Darker
Female | Lighter
Male | Lighter
Female | Largest
Gap | |----------------------|----------------|------------------|-----------------|-------------------|----------------| | Microsoft | 94.0% | 79.2% | 100% | 98.3% | 20.8% | | FACE** | 99.3% | 65.5% | 99.2% | 94.0% | 33.8% | | IBM | 88.0% | 65.3% | 99.7% | 92.9% | 34.4% | What type of bias? # Dissecting racial bias in an algorithm used to manage the health of populations ZIAD OBERMEYER (i), BRIAN POWERS, CHRISTINE VOGELI, AND SENDHIL MULLAINATHAN (i) Authors Info & Affiliations SCIENCE • 25 Oct 2019 • Vol 366, Issue 6464 • pp. 447-453 • DOI: 10.1126/science.aax2342 139,001 77 1,266 0 \sim 0 (2) #### Racial bias in health algorithms The U.S. health care system uses commercial algorithms to guide health decisions. Obermeyer *et al.* find evidence of racial bias in one widely used algorithm, such that Black patients assigned the same level of risk by the algorithm are sicker than White patients (see the Perspective by Benjamin). The authors estimated that this racial bias reduces the number of Black patients identified for extra care by more than half. Bias occurs because the algorithm uses health costs as a proxy for health needs. Less money is spent on Black patients who have the same level of need, and the algorithm thus falsely concludes that Black patients are healthier than equally sick White patients. Reformulating the algorithm so that it no longer uses costs as a proxy for needs eliminates the racial bias in predicting who needs extra care. What type of bias? ## Predictive policing "Quickly connect the dots, identify hidden patterns and discover trends" (Splunk) I LOI I IAL WAS # Judge Rules \$400 Million Algorithmic System Illegally Denied Thousands of People's Medicaid Benefits Thousands of children and adults were automatically terminated from Medicaid and disability benefits programs by a computer system that was supposed to make applying for and receiving health coverage easier. "The system often doesn't load the appropriate data, assigns beneficiaries to the wrong households, and makes incorrect eligibility determinations" What type of bias? # 3a. How does machine learning affect DTD? From the point of view of data quality and data analysis #### ML is used in the collection, processing and interpretation of DTC # Main uses of ML in DTD: Recommendation algorithms #### Data interpretation Data augmentation ```], "genderInfo" : { "gender" : "male" } ``` ``` "inferredAgeInfo" : { "age" : [">50"], "birthDate" : "" } ``` ``` { "name" : "Rap", "isDisabled" : false }, { "name" : "Retired life", "isDisabled" : false }, { "name" : "Rom-com films", "isDisabled" : false }, ``` ## **Errors introduced by ML** - Total error = measurement error + representation error - Measurement error (from lecture 4): - On a conceptual level: validity - Data can be algorithmically confounded - Our measurement will include both human behavior and the influence of the algorithm - Processing error: - When using ML to process data - A ML trained using biased (human) data will typically be biased ## **Problems with validity** Facebook uses the "clustering coefficient" to recommend friends: e.g., if you have two friends, Sanne and Joep, that are not Facebook friends, Facebook will suggest Sanne and Joep to add each other as friends. Your measurement of social closure (clustering coefficient) is measuring *both* social closure and the effect of the algorithm. ### **Problems with validity** People less engaged! How do social media feed algorithms affect attitudes and behavior in an election campaign? Guess et al., 2023, Science #### More diverse sources! Average proportion of feed content (% change) Algorithmic feed Chronological feed # In your group project Think about how ML may be affecting: - The text data you collected (validity) - The labels you infer from the text (processing error) # 3b. How does machine learning affect societies? - a) Through errors in algorithms - b) Through feedback loops - c) By reinforcing power structures # A) Errors in algorithms We need to consider the errors of every algorithm: - How often they fail? - For whom do they fail? (bias) Remember there are people behind the data: - What are the costs of those failures? - What are the long-term effecst? (feedback effects) ## Things can go horribly wrong ML is used in many crucial areas for human wellbeing: - Who to hire CV screening - Who to promote performance reviews - Who to jail predictive policing - Who to kill "we kill people based on metadata" (based on similarity with somebody who was labeled as an enemy) Those algorithms are often (1) "opaque," (2) "beyond dispute or appeal," and (3) disproportionally impact the underprivileged (Cathy O'Neal) Chaty O'Neil Mathematician (Harvard/MIT/Barnard College) Worked four years in finance and advertisement ## B) Algorithms create feedback effects When machine learning models are being used to make decisions, they cannot be separated from the social and ethical context in which they are applied. (Big Data and Social Science book) Measuring algorithmically infused societies Wagner et al, 2021, Nature Social regulations acceptibility Political Recommendations Society Dating of what news to recommendations consume Economic Economic goals Recommendations of platform providers of what to buy Algorithms People less engaged! How do social media feed algorithms affect attitudes and behavior in an election campaign? Guess et al., 2023, Science Average proportion of feed content (% change) Facebook told the White House to focus on the 'facts' about vaccine misinformation. Internal documents show it wasn't sharing key data. The tech giant meticulously tracked how misleading medical information spread — but didn't tell policymakers, even as they demanded it do so. https://www.washingtonpost.com/technology/2021/10/28/facebook-covid-misinformation https://www.wsj.com/articles/facebook-mark-zuckerberg-vaccinated-11631880296?mod=article_inline #### **Upvoting extremism: Collective identity formation and the extreme right on Reddit** | Tiana Gaudette DM, Ryan Scrivens D, [], and Ric | chard Frank (+1) View all authors and affiliations | |---|--| | Volume 23, Issue 12 https://doi.org/10.1177/1 | 461444820958123 | | Contents | (A) Get access | #### **Abstract** Since the advent of the Internet, right-wing extremists and those who subscribe to extreme right views have exploited online platforms to build a collective identity among the like-minded. Research in this area has largely focused on extremists' use of websites, forums, and mainstream social media sites, but overlooked in this research has been an exploration of the popular social news aggregation site Reddit. The current study explores the role of Reddit's unique voting algorithm in facilitating "othering" discourse and, by extension, collective identity formation among members of a notoriously hateful subreddit community, r/The_Donald. The results of the thematic analysis indicate that those who post extreme-right content on r/ The_Donald use Reddit's voting algorithm as a tool to mobilize like-minded members by promoting extreme discourses against two prominent outgroups: Muslims and the Left. Overall, r/The_Donald's "sense of community" facilitates identity work among its members by creating an environment wherein extreme right views are continuously validated. Simil 9 <u></u> Ω ## C) ML reinforces power structures #### **Meredith Whittaker** - Employed by Google for 13 years - Research Professor at New York University - Co-founder and faculty director of the Al Now Institute. - President of Signal "Private computational systems marketed as artificial intelligence (AI) are threading through our public life and institutions, concentrating industrial power, compounding marginalization, and quietly shaping access to resources and information" (in The Steep Cost of Capture, 2021) "The commoditization of our data enables an asymmetric redistribution of power that is weighted toward the actors who have access and the capability to make sense of information" (West, 2017) Even if the algorithms are unbiased! We understand social media platforms as ways to share and see content. Private companies influence societal outcomes by controlling information flows and target ads and services. #### We should examine power structures: Which actors are involved? Whose interests are prioritized and ignored? #### How was Facebook users' data misused? In 2014 a Facebook quiz invited users to find out their personality type The app collected the data of those taking the quiz, but also recorded the public data of their friends About 305,000 people installed the app, but it gathered information on up to 87 million people, according to Facebook It is claimed the data was sold to Cambridge Analytica (CA), which used it to psychologically profile voters in the US Cambridge Analytica infographic Social consequences are often accepted as part of the business model ## THE WALL STREET JOURNAL. the facebook files Facebook Knows Instagram Is Toxic for Teen Girls, Company **Documents Show** Its own in-depth research shows a significant teen mental-health issue that Facebook plays down in public For years they had focus groups, online surveys, diary studies - so this was not one chance finding. - •A 2019 presentation slide said: "We make body-image issues worse for one in three teenage girls" - •Another slide said teenagers blamed Instagram for increased levels of anxiety and depression - •Some 13% of UK teenagers and 6% of US users surveyed traced a desire to kill themselves to Instagram Instagram response: "Based on our research and feedback from experts, we've developed features so people can protect themselves from bullying, we've given everyone the option to hide 'like' counts and we've continued to connect people who may be struggling with local support organisations." # Performing Platform Governance: Facebook and the Stage Management of Data Relations Karen Huang¹ · P. M. Krafft² Received: 2 April 2021 / Accepted: 12 February 2024 / Published online: 4 April 2024 #### Abstract Controversies surrounding social media platforms have provided opportunities for institutional reflexivity amongst users and regulators on how to understand and govern platforms. Amidst contestation, platform companies have continued to enact projects that draw upon existing modes of privatized governance. We investigate how social media companies have attempted to achieve closure by continuing to set the terms around platform governance. We investigate two projects implemented by Facebook (Meta)—authenticity regulation and privacy controls—in response to the Russian Interference and Cambridge Analytica controversies surrounding the 2016 U.S. Presidential Election. Drawing on Goffman's metaphor of stage management, we analyze the techniques deployed by Facebook to reinforce a division between what is visible and invisible to the user experience. These platform governance projects propose to act upon front-stage data relations: information that users can see from other users—whether that is content that users can see from "bad actors", or information that other users can see about oneself. At the same time, these projects relegate back-stage data relations—information flows between users constituted by recommendation and targeted advertising systems—to invisibility and inaction. As such, Facebook renders the user experience actionable for governance, while foreclosing governance of back-stage data relations central to the economic value of the platform. As social media companies continue to perform platform governance projects following controversies, our paper invites reflection on the politics of these projects. By destabilizing the boundaries drawn by platform companies, we #### **Concentration of control** Market share of cloud computing providers Chart: Exponential View • Source: CRN, Al Now Institute • Created with Datawrapper Only hegemonic companies have the capital and power to thrive in the new era, reinforcing their power and dominance. #### Revenue in 2023: Amazon: \$575 bn. Netherlands: \$420 bn. (386 bn. eur) Apple: \$383 bn. Alphabet: \$303 bn. Microsoft: \$212 bn. Meta: \$135 bn. (updated from Babic et al., 2017) ### Climate cost of ML Figure 4. A single inference uses more energy for models with broad purposes. Data from Luccioni et al. (2024). ## Exercise (in groups of 4, please be kind) Predictive policing is increasingly used (also by the Netherlands). Let's imagine these systems are trained in historical and personal data. Using personal data for Al/predictive policing is not allowed in the EU. Where can biases enter those models? (sample/outcome/features/pipeline) Who are the actors? Whose interests are prioritized? Do you think the benefits outweight the biases? # What can we do when working with data/ML models? (Data for Humanity Iniciative) - 1. "**Do no harm**". The digital footprint that everyone now leaves behind exposes individuals, social groups and society as a whole to a certain degree of transparency and vulnerability. Those who have access to the insights afforded by big data must not harm third parties. - 2. Ensure that data is used in such a way that the results will foster the peaceful coexistence of humanity. The selection of content and access to data influences the world view of a society. Peaceful coexistence is only possible if data scientists are aware of their responsibility to provide even and unbiased access to data. - 3. **Use data to help people in need.** In addition to being economically beneficial, innovation in the sphere of big data could also create additional social value. In the age of global connectivity, it is now possible to create innovative big data tools which could help to support people in need. - 4. *Use data to protect nature and reduce pollution of the environment*. One of the biggest achievements of big data analysis is the development of efficient processes and synergy effects. Big data can only offer a sustainable economic and social future if such methods are also used to create and maintain a healthy and stable natural environment. - 5. *Use data to eliminate discrimination and intolerance and to create a fair system of social coexistence*. Social media has created a strengthened social network. This can only lead to long-term global stability if it is built on the principles of fairness, equality and justice. ### What are some things that we can do as individuals? Reduce tracking: - Think if the app you are using contributes to your wellbeing, or if there are better ways for it. - Use privacy-friendly software when possible (e.g., Signal, Proton, Cryptpad) - Use plugins to reduce tracking Don't take services for granted. Examine power structures: - Who benefits? - Who gets harm? - Who gets to decide? Require model transparency and accountability. https://whitecollar.thenewinquiry.com/#dr5rudb # 4. Dealing with bias in ML ### What information do we need to understand bias? Information on *protected attributes* (gender, sex, class, etc) Information on *true labels* to create the confusion matrix (per attribute) \rightarrow Often we need to manually label data A definition of bias/fairness → There is no universally-accepted definition of what it means for a model to be fair. This is not an excuse from ignoring fairness! ## **Errors in algorithms** We need to consider the errors of every algorithm: - How often they fail? - For whom do they fail? (bias) Remember there are people behind the data: - What are the costs of those failures? - Assistive intervention: "Individuals may be harmed by being incorrectly included in the "low need" population that does not receive an intervention" (harm = false negatives, e.g., not supporting somebody in need) - Punitive intervention: "Individuals may be harmed by being incorrectly included in the "high risk" population that receives an intervention" (harm = false positives, e.g. jailing an innocent) - What are the long-term effecst? (feedback effects) ## Assessing bias, punitive example - Among the general population (T), the probability of being wrongly jailed is independent of race - Among the jailed population (those predicted criminals), the probability of being wrongly jailed is independent of race: Parity in **False Discovery Rate.** - → Focuses on those affected by the intervention True negative - Among innocents (the actual non-criminals), the probability of being wrongly jailed is independent of rage: Parity in False Positive Rate (Predictive Equality) - → Focuses on those who should not be affected by the intervention Predicted Predicted not criminal Criminal True positive False negative False positive Not criminal False positive All False positive Predicted criminal False positive Not criminal No universal definition of fairness! #### Models can be fair and unfair at the same time False positive Not criminal False positive Predicted criminal | Metric | Caucasian | African American | |--------------------------------|-----------|------------------| | False Positive Rate (FPR) | 23% | 45% | | | | | | False Discovery Rate (FDR) | 41% | 37% | Correctional Offender Management Profiling for Alternative Sanctions (COMPAS): Evaluates the likelihood of an offender committing another crime in the future. - FPR: Among black defendants who would did not end up with another arrest, 45% were labeled by the system as high risk, almost twice the rate for whites (23%). - FDR: Among individuals labelled as high risk, a similar fraction of black and white defendants were arrested again. It's generally impossible for a model to maximize both fairness criteria at the same time # Assessing bias, assistive example In need True positive False negative Not in need False positive True negative ## The application of the model may also introduce bias "Perhaps a model developed to screen out unqualified job candidates is only "trusted" by a hiring manager for female candidates but often ignored or overridden for men. In a perverse way, applying an unbiased model in such a context might serve to increase inequities by giving bad actors more information with which to (wrongly) justify their discriminatory practices." (Big Data and Social Science) Perhaps a model developed to *identify criminal behavior* is only *deployed in low-income areas*. In a perverse way, applying an unbiased model in such a context might serve to increase inequities by giving bad actors more information with which to (wrongly) justify their discriminatory practices. # Dealing with bias in ML **Audit the model** to understand bias #### Mitigate bias: - Test different models and select one with strong performance across fairness and accuracy (Pareto optimality). - Adjust thresholds to increase/decrease FP or FN. Example: Offer a subsidy to Group A if the model predicts a need with over 50% probability, and to Group B if the need is predicted with over 25% probability. **Consider Intersectionality**: Optimizing for one factor (e.g., gender) may introduce bias in another (e.g., class). **Regularly Test for Bias**: Monitor for concept drift and ensure ongoing fairness. **Consider if Bias May Be Acceptable**: For example, if the intervention is most useful to a specific subpopulation. ## **TODAY** ## Lecture - 1. Explain machine learning in your own words - 2. Explain why machine learning models may be biased. - 3. Understand the effects of ML on DTD and society. - 4. Assess bias in ML models ## Lab Apply a ML model to text data Audit a ML model # **Summary of the course** Week 4: Errors in DTD Week 6: Ethics and Legislation Week 7: Designed big data Week 8: Beyond DTD and Q&A See you after lunch! RUPPERT - 011